Quantcast
Channel: Security Tools – Security List Network™
Viewing all articles
Browse latest Browse all 443

Locker Decrypter – Python tool to decrypt files encrypted by Locker malware.

$
0
0

Locker is probably one of the worst malware which exists as of today. It is variant of Cryptolocker family of malware, and so called ransomware, which encrypts victim’s important files (such as photos and documents) based on file extension.
you might be aware the private key is used in the RSACryptoServiceProvider class .net and files are encrypted with AES-256 bit using the RijndaelManaged class.
This is the structure of the encrypted files:
– 32 bit integer, header length
– byte array, header (length is previous int)

*decrypt byte array using RSA & private key.
Decrypted byte array contains:
– 32 bit integer, IV length
– byte array, IV (length is in previous int)
– 32 bit integer, key length
– byte array, Key (length is in previous int)

Dependencies:
This tool requires Python 2 (tested with 2.7, Python 3 does not work as someone would need to port the rijndael.py).
+ untangle
+ pycrypto

How to decrypt my files with infected locker Malware:
First you have to dig either RSA public key or Bitcoin address from vitcim’s computer. The files containing relevant information typically reside in C:\ProgramData\rkcl directory.
+ data.aa0 – Contains list of encrypted files
+ data.aa6 – Contains the bitcoin address
+ data.aa7 – Contains the public key
Use either RSA public key or Bitcoin address to find the private key from the csv-file referred above and to save it to file private_key.xml:
Then run the tool in a directory where you want to decrypt your files:
The tool automatically tries to determine which of the files were actually encrypted and which were not.

lockerdecrypter.py ( Added Rijndael reference implementation and class to implement cryptoblock-chain) Script:

#!/usr/bin/env python

import untangle
from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP
from Crypto.Util.number import bytes_to_long
from base64 import b64decode
import io
from struct import unpack
import sys
import os

from rijndael import rijndael
from cbc import zeropad, cbc


class DecryptError(Exception):
    pass


def decrypt_file(encrypted_filename, decrypted_filename, rsa_cipher):
    with open(encrypted_filename, 'rb') as encrypted_file:
        # Get the file size by seeking into end
        encrypted_file.seek(0, io.SEEK_END)
        file_size = encrypted_file.tell()

        # Some checks
        encrypted_file.seek(0)
        if 0 != encrypted_file.tell() or file_size < 4:
            raise DecryptError()

        header_size = unpack('I', encrypted_file.read(4))[0]
        
        if header_size > file_size:
            raise DecryptError()

        # Read and decrypt header
        header = encrypted_file.read(header_size)
        
        try:
            decrypted_header = cipher.decrypt(header)
        except:
            raise DecryptError()

        # Read initialization vector and key from header
        aes_iv_length = unpack('I', decrypted_header[0:4])[0]
        aes_iv_start = 4
        aes_iv = decrypted_header[aes_iv_start:aes_iv_start + aes_iv_length]
        aes_key_length_start = aes_iv_start + aes_iv_length
        aes_key_length = unpack('I', 
            decrypted_header[aes_key_length_start:aes_key_length_start + 4])[0]
        aes_key_start = aes_key_length_start + 4
        aes_key = decrypted_header[aes_key_start:aes_key_start + aes_key_length]

        # Read encrypted file into memory
        ciphertext = encrypted_file.read()

        # Initialize cipher and crypto-block-chain
        rjn_cipher = rijndael(aes_key, 32)
        padding = zeropad(32)
        cbc_cipher = cbc(padding, rjn_cipher, aes_iv)

        # Decrypt the file
        decrypted_ct = cbc_cipher.decrypt(ciphertext)

        with open(decrypted_filename, 'wb') as decrypted_file:
            decrypted_file.write(decrypted_ct)


def decrypt_directory(directory_to_decrypt, rsa_cipher):
    for root, dirs, filenames in os.walk(directory_to_decrypt):
        for filename in filenames:
            # Construct full filepath
            full_filepath = os.path.join(root, filename)
            full_filepath_decrypted = full_filepath + '.decrypted'

            # Do not try to decrypt symlinks
            if not os.path.islink(full_filepath):
                # Try to decrypt the file
                try:
                    decrypt_file(full_filepath, full_filepath_decrypted, rsa_cipher)
                    os.rename(full_filepath, full_filepath + '.orig')
                    os.rename(full_filepath_decrypted, full_filepath)
                    print(full_filepath + ' decrypted')
                except DecryptError:
                    print(full_filepath + ' could not decrypt')


if __name__ == "__main__":

    if len(sys.argv) < 3:
        sys.exit("Usage: %s <private_key.xml> <directory_to_decrypt>" % sys.argv[0])

    private_key_xml_filename = sys.argv[1]
    directory_to_decrypt = sys.argv[2]

    # Parse XML file containing private key components
    priv_key_dom = untangle.parse(private_key_xml_filename)

    # Get private key components from XML
    n = priv_key_dom.RSAKeyValue.Modulus.cdata
    e = priv_key_dom.RSAKeyValue.Exponent.cdata
    d = priv_key_dom.RSAKeyValue.D.cdata

    # Decode base64 RSA components and convert them from bytes to big integer
    rsa_components = tuple(map(bytes_to_long, map(b64decode, (n, e, d))))

    # Construct RSA Key object
    rsa_key = RSA.construct(rsa_components)

    # Construct new PCKS1_OAEP cipher using the RSA key
    cipher = PKCS1_OAEP.new(rsa_key)

    decrypt_directory(directory_to_decrypt, cipher)

rijndael.py Script :

"""
A pure python (slow) implementation of rijndael with a decent interface
To include -
from rijndael import rijndael
To do a key setup -
r = rijndael(key, block_size = 16)
key must be a string of length 16, 24, or 32
blocksize must be 16, 24, or 32. Default is 16
To use -
ciphertext = r.encrypt(plaintext)
plaintext = r.decrypt(ciphertext)
If any strings are of the wrong length a ValueError is thrown
"""

# ported from the Java reference code by Bram Cohen, April 2001
# this code is public domain, unless someone makes 
# an intellectual property claim against the reference 
# code, in which case it can be made public domain by 
# deleting all the comments and renaming all the variables

import copy
import string

shifts = [[[0, 0], [1, 3], [2, 2], [3, 1]],
          [[0, 0], [1, 5], [2, 4], [3, 3]],
          [[0, 0], [1, 7], [3, 5], [4, 4]]]

# [keysize][block_size]
num_rounds = {16: {16: 10, 24: 12, 32: 14}, 24: {16: 12, 24: 12, 32: 14}, 32: {16: 14, 24: 14, 32: 14}}

A = [[1, 1, 1, 1, 1, 0, 0, 0],
     [0, 1, 1, 1, 1, 1, 0, 0],
     [0, 0, 1, 1, 1, 1, 1, 0],
     [0, 0, 0, 1, 1, 1, 1, 1],
     [1, 0, 0, 0, 1, 1, 1, 1],
     [1, 1, 0, 0, 0, 1, 1, 1],
     [1, 1, 1, 0, 0, 0, 1, 1],
     [1, 1, 1, 1, 0, 0, 0, 1]]

# produce log and alog tables, needed for multiplying in the
# field GF(2^m) (generator = 3)
alog = [1]
for i in range(255):
    j = (alog[-1] << 1) ^ alog[-1]
    if j & 0x100 != 0:
        j ^= 0x11B
    alog.append(j)

log = [0] * 256
for i in range(1, 255):
    log[alog[i]] = i

# multiply two elements of GF(2^m)
def mul(a, b):
    if a == 0 or b == 0:
        return 0
    return alog[(log[a & 0xFF] + log[b & 0xFF]) % 255]

# substitution box based on F^{-1}(x)
box = [[0] * 8 for i in range(256)]
box[1][7] = 1
for i in range(2, 256):
    j = alog[255 - log[i]]
    for t in range(8):
        box[i][t] = (j >> (7 - t)) & 0x01

B = [0, 1, 1, 0, 0, 0, 1, 1]

# affine transform:  box[i] <- B + A*box[i]
cox = [[0] * 8 for i in range(256)]
for i in range(256):
    for t in range(8):
        cox[i][t] = B[t]
        for j in range(8):
            cox[i][t] ^= A[t][j] * box[i][j]

# S-boxes and inverse S-boxes
S =  [0] * 256
Si = [0] * 256
for i in range(256):
    S[i] = cox[i][0] << 7
    for t in range(1, 8):
        S[i] ^= cox[i][t] << (7-t)
    Si[S[i] & 0xFF] = i

# T-boxes
G = [[2, 1, 1, 3],
    [3, 2, 1, 1],
    [1, 3, 2, 1],
    [1, 1, 3, 2]]

AA = [[0] * 8 for i in range(4)]

for i in range(4):
    for j in range(4):
        AA[i][j] = G[i][j]
        AA[i][i+4] = 1

for i in range(4):
    pivot = AA[i][i]
    if pivot == 0:
        t = i + 1
        while AA[t][i] == 0 and t < 4:
            t += 1
            assert t != 4, 'G matrix must be invertible'
            for j in range(8):
                AA[i][j], AA[t][j] = AA[t][j], AA[i][j]
            pivot = AA[i][i]
    for j in range(8):
        if AA[i][j] != 0:
            AA[i][j] = alog[(255 + log[AA[i][j] & 0xFF] - log[pivot & 0xFF]) % 255]
    for t in range(4):
        if i != t:
            for j in range(i+1, 8):
                AA[t][j] ^= mul(AA[i][j], AA[t][i])
            AA[t][i] = 0

iG = [[0] * 4 for i in range(4)]

for i in range(4):
    for j in range(4):
        iG[i][j] = AA[i][j + 4]

def mul4(a, bs):
    if a == 0:
        return 0
    r = 0
    for b in bs:
        r <<= 8
        if b != 0:
            r = r | mul(a, b)
    return r

T1 = []
T2 = []
T3 = []
T4 = []
T5 = []
T6 = []
T7 = []
T8 = []
U1 = []
U2 = []
U3 = []
U4 = []

for t in range(256):
    s = S[t]
    T1.append(mul4(s, G[0]))
    T2.append(mul4(s, G[1]))
    T3.append(mul4(s, G[2]))
    T4.append(mul4(s, G[3]))

    s = Si[t]
    T5.append(mul4(s, iG[0]))
    T6.append(mul4(s, iG[1]))
    T7.append(mul4(s, iG[2]))
    T8.append(mul4(s, iG[3]))

    U1.append(mul4(t, iG[0]))
    U2.append(mul4(t, iG[1]))
    U3.append(mul4(t, iG[2]))
    U4.append(mul4(t, iG[3]))

# round constants
rcon = [1]
r = 1
for t in range(1, 30):
    r = mul(2, r)
    rcon.append(r)

del A
del AA
del pivot
del B
del G
del box
del log
del alog
del i
del j
del r
del s
del t
del mul
del mul4
del cox
del iG

class rijndael:
    def __init__(self, key, block_size = 16):
        if block_size != 16 and block_size != 24 and block_size != 32:
            raise ValueError('Invalid block size: ' + str(block_size))
        if len(key) != 16 and len(key) != 24 and len(key) != 32:
            raise ValueError('Invalid key size: ' + str(len(key)))
        self.block_size = block_size

        ROUNDS = num_rounds[len(key)][block_size]
        BC = block_size // 4
        # encryption round keys
        Ke = [[0] * BC for i in range(ROUNDS + 1)]
        # decryption round keys
        Kd = [[0] * BC for i in range(ROUNDS + 1)]
        ROUND_KEY_COUNT = (ROUNDS + 1) * BC
        KC = len(key) // 4

        # copy user material bytes into temporary ints
        tk = []
        for i in range(0, KC):
            tk.append((ord(key[i * 4]) << 24) | (ord(key[i * 4 + 1]) << 16) |
                (ord(key[i * 4 + 2]) << 8) | ord(key[i * 4 + 3]))

        # copy values into round key arrays
        t = 0
        j = 0
        while j < KC and t < ROUND_KEY_COUNT:
            Ke[t // BC][t % BC] = tk[j]
            Kd[ROUNDS - (t // BC)][t % BC] = tk[j]
            j += 1
            t += 1
        tt = 0
        rconpointer = 0
        while t < ROUND_KEY_COUNT:
            # extrapolate using phi (the round key evolution function)
            tt = tk[KC - 1]
            tk[0] ^= (S[(tt >> 16) & 0xFF] & 0xFF) << 24 ^  \
                     (S[(tt >>  8) & 0xFF] & 0xFF) << 16 ^  \
                     (S[ tt        & 0xFF] & 0xFF) <<  8 ^  \
                     (S[(tt >> 24) & 0xFF] & 0xFF)       ^  \
                     (rcon[rconpointer]    & 0xFF) << 24
            rconpointer += 1
            if KC != 8:
                for i in range(1, KC):
                    tk[i] ^= tk[i-1]
            else:
                for i in range(1, KC // 2):
                    tk[i] ^= tk[i-1]
                tt = tk[KC // 2 - 1]
                tk[KC // 2] ^= (S[ tt        & 0xFF] & 0xFF)       ^ \
                               (S[(tt >>  8) & 0xFF] & 0xFF) <<  8 ^ \
                               (S[(tt >> 16) & 0xFF] & 0xFF) << 16 ^ \
                               (S[(tt >> 24) & 0xFF] & 0xFF) << 24
                for i in range(KC // 2 + 1, KC):
                    tk[i] ^= tk[i-1]
            # copy values into round key arrays
            j = 0
            while j < KC and t < ROUND_KEY_COUNT:
                Ke[t // BC][t % BC] = tk[j]
                Kd[ROUNDS - (t // BC)][t % BC] = tk[j]
                j += 1
                t += 1
        # inverse MixColumn where needed
        for r in range(1, ROUNDS):
            for j in range(BC):
                tt = Kd[r][j]
                Kd[r][j] = U1[(tt >> 24) & 0xFF] ^ \
                           U2[(tt >> 16) & 0xFF] ^ \
                           U3[(tt >>  8) & 0xFF] ^ \
                           U4[ tt        & 0xFF]
        self.Ke = Ke
        self.Kd = Kd

    def encrypt(self, plaintext):
        if len(plaintext) != self.block_size:
            raise ValueError('wrong block length, expected ' + str(self.block_size) + ' got ' + str(len(plaintext)))
        Ke = self.Ke

        BC = self.block_size // 4
        ROUNDS = len(Ke) - 1
        if BC == 4:
            SC = 0
        elif BC == 6:
            SC = 1
        else:
            SC = 2
        s1 = shifts[SC][1][0]
        s2 = shifts[SC][2][0]
        s3 = shifts[SC][3][0]
        a = [0] * BC
        # temporary work array
        t = []
        # plaintext to ints + key
        for i in range(BC):
            t.append((ord(plaintext[i * 4    ]) << 24 |
                      ord(plaintext[i * 4 + 1]) << 16 |
                      ord(plaintext[i * 4 + 2]) <<  8 |
                      ord(plaintext[i * 4 + 3])        ) ^ Ke[0][i])
        # apply round transforms
        for r in range(1, ROUNDS):
            for i in range(BC):
                a[i] = (T1[(t[ i           ] >> 24) & 0xFF] ^
                        T2[(t[(i + s1) % BC] >> 16) & 0xFF] ^
                        T3[(t[(i + s2) % BC] >>  8) & 0xFF] ^
                        T4[ t[(i + s3) % BC]        & 0xFF]  ) ^ Ke[r][i]
            t = copy.copy(a)
        # last round is special
        result = []
        for i in range(BC):
            tt = Ke[ROUNDS][i]
            result.append((S[(t[ i           ] >> 24) & 0xFF] ^ (tt >> 24)) & 0xFF)
            result.append((S[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16)) & 0xFF)
            result.append((S[(t[(i + s2) % BC] >>  8) & 0xFF] ^ (tt >>  8)) & 0xFF)
            result.append((S[ t[(i + s3) % BC]        & 0xFF] ^  tt       ) & 0xFF)
        return ''.join(map(chr, result))

    def decrypt(self, ciphertext):
        if len(ciphertext) != self.block_size:
            raise ValueError('wrong block length, expected ' + str(self.block_size) + ' got ' + str(len(ciphertext)))
        Kd = self.Kd

        BC = self.block_size // 4
        ROUNDS = len(Kd) - 1
        if BC == 4:
            SC = 0
        elif BC == 6:
            SC = 1
        else:
            SC = 2
        s1 = shifts[SC][1][1]
        s2 = shifts[SC][2][1]
        s3 = shifts[SC][3][1]
        a = [0] * BC
        # temporary work array
        t = [0] * BC
        # ciphertext to ints + key
        for i in range(BC):
            t[i] = (ord(ciphertext[i * 4    ]) << 24 |
                    ord(ciphertext[i * 4 + 1]) << 16 |
                    ord(ciphertext[i * 4 + 2]) <<  8 |
                    ord(ciphertext[i * 4 + 3])        ) ^ Kd[0][i]
        # apply round transforms
        for r in range(1, ROUNDS):
            for i in range(BC):
                a[i] = (T5[(t[ i           ] >> 24) & 0xFF] ^
                        T6[(t[(i + s1) % BC] >> 16) & 0xFF] ^
                        T7[(t[(i + s2) % BC] >>  8) & 0xFF] ^
                        T8[ t[(i + s3) % BC]        & 0xFF]  ) ^ Kd[r][i]
            t = copy.copy(a)
        # last round is special
        result = []
        for i in range(BC):
            tt = Kd[ROUNDS][i]
            result.append((Si[(t[ i           ] >> 24) & 0xFF] ^ (tt >> 24)) & 0xFF)
            result.append((Si[(t[(i + s1) % BC] >> 16) & 0xFF] ^ (tt >> 16)) & 0xFF)
            result.append((Si[(t[(i + s2) % BC] >>  8) & 0xFF] ^ (tt >>  8)) & 0xFF)
            result.append((Si[ t[(i + s3) % BC]        & 0xFF] ^  tt       ) & 0xFF)
        return ''.join(map(chr, result))

def encrypt(key, block):
    return rijndael(key, len(block)).encrypt(block)

def decrypt(key, block):
    return rijndael(key, len(block)).decrypt(block)

 
cbc.py (Added Rijndael reference implementation and class to implement crypto-block-chain) SCript:

class zeropad:

    def __init__(self, block_size):
        assert block_size > 0 and block_size < 256
        self.block_size = block_size

    def pad(self, pt):
        ptlen = len(pt)
        padsize = self.block_size - ((ptlen + self.block_size - 1) % self.block_size + 1)
        return pt + "\0" * padsize

    def unpad(self, ppt):
        assert len(ppt) % self.block_size == 0
        offset = len(ppt)
        if (offset == 0):
            return ''
        end = offset - self.block_size + 1
        while (offset > end):
            offset -= 1;
            if (ppt[offset] != "\0"):
                return ppt[:offset + 1]
        assert false

class cbc:

    def __init__(self, padding, cipher, iv):
        assert padding.block_size == cipher.block_size;
        assert len(iv) == cipher.block_size;
        self.padding = padding
        self.cipher = cipher
        self.iv = iv

    def encrypt(self, pt):
        ppt = self.padding.pad(pt)
        offset = 0
        ct = ''
        v = self.iv
        while (offset < len(ppt)):
            block = ppt[offset:offset + self.cipher.block_size]
            block = self.xorblock(block, v)
            block = self.cipher.encrypt(block)
            ct += block
            offset += self.cipher.block_size
            v = block
        return ct;

    def decrypt(self, ct):
        assert len(ct) % self.cipher.block_size == 0
        ppt = ''
        offset = 0
        v = self.iv
        while (offset < len(ct)):
            block = ct[offset:offset + self.cipher.block_size]
            decrypted = self.cipher.decrypt(block)
            ppt += self.xorblock(decrypted, v)
            offset += self.cipher.block_size
            v = block
        pt = self.padding.unpad(ppt)
        return pt;

    def xorblock(self, b1, b2):
        # sorry, not very Pythonesk
        i = 0
        r = '';
        while (i < self.cipher.block_size):
             r += chr(ord(b1[i]) ^ ord(b2[i]))
             i += 1
        return r

Source : https://github.com/mikatammi


Viewing all articles
Browse latest Browse all 443

Latest Images

Trending Articles



Latest Images